Interpreting Out-of-Control Signals of MEWMA Control Charts Employing Neural Networks

نویسندگان

  • FRANCISCO APARISI
  • GERARDO AVENDAÑO
  • JOSÉ SANZ
چکیده

Multivariate quality control charts show some advantages to monitor several variables in comparison with the simultaneous use of univariate charts. Nevertheless, there are some disadvantages when multivariate schemes are employed. The main problem is how to interpret the out-of-control signal of a multivariate chart. For example, in the case of control charts designed to monitor the mean vector, the chart signals showing that it must be accepted that there is a shift in the vector, but no indication is given about the variables that have produced this shift. The MEWMA quality control chart is a very powerful scheme to detect small shifts in the mean vector. There are no previous specific works about the interpretation of the out-of-control signal of this chart. In this paper neural networks are designed to interpret the out-of-control signal of the MEWMA chart, and the percentage of correct classifications is studied for different cases. The utilization of this neural network in the industry is very easy, thanks to the developed software. Key-Words: Multivariate quality control. Artificial Intelligence. Neural Networks. Computer Applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interpreting the Out-of-Control Signals of Multivariate Control Charts Employing Neural Networks

Multivariate quality control charts show some advantages to monitor several variables in comparison with the simultaneous use of univariate charts, nevertheless, there are some disadvantages. The main problem is how to interpret the out-ofcontrol signal of a multivariate chart. For example, in the case of control charts designed to monitor the mean vector, the chart signals showing that it must...

متن کامل

A Multiobjective Optimization for the Ewma and Mewma Quality Control Charts

The Multivariate EWMA control chart, MEWMA, Lowry, Woodall, Champ and Ridgon [1] and its univariate version EWMA, may be designed to efficiently detect small shifts in the mean vector of a set of p quality characteristics of a production process. However, this work presents a method for the optimal design of MEWMA and EWMA charts parameters to control processes where it is not convenient to det...

متن کامل

Multi-Criterion Optimization for the EWMA and MEWMA Quality Control Charts Employing Genetic Algorithms

The EWMA quality control chart, and its multivariate version (MEWMA), may be designed to efficiently detect small shifts in the mean vector of a set of p quality characteristics of a production process. However, this work presents a method for the optimal design of the parameters of the MEWMA and EWMA charts to control processes where it is not convenient to detect small magnitude shifts and, a...

متن کامل

An artificial Neural Network approach to monitor and diagnose multi-attribute quality control processes

One of the existing problems of multi-attribute process monitoring is the occurrence of high number of false alarms (Type I error). Another problem is an increase in the probability of not detecting defects when the process is monitored by a set of independent uni-attribute control charts. In this paper, we address both of these problems and consider monitoring correlated multi-attributes proce...

متن کامل

A Comparative Study of Four Evolutionary Algorithms for Economic and Economic-Statistical Designs of MEWMA Control Charts

The multivariate exponentially weighted moving average (MEWMA) control chart is one of the best statistical control chart that are usually used to detect simultaneous small deviations on the mean of more than one cross-correlated quality characteristics. The economic design of MEWMA control charts involves solving a combinatorial optimization model that is composed of a nonlinear cost function ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006